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Free gravitational oscillations in rotating 
rectangular basins? 

By DESIRAJU B. RAO 
The University of Chicago$ 

(Received 29 July 1965 and in revised form 30 November 1965) 

The study of free oscillations of a homogeneous liquid under gravity in rotating 
rectangular basins of uniform depth is undertaken from both theoretical and 
experimental considerations. 

The theoretical study is in the framework of the quasistatic equations. It is 
also assumed that the curvature of the free surface can be ignored. Numerical 
computations for the frequencies and modal structures were carried out for 
several of the slowest antisymmetric and symmetric modes in a square basin 
and in a rectangular basin of two-to-one dimension ratio, without any restriction 
on the angular speed of rotation of the basin. These computations are in agree- 
ment with a numerical value obtained many years ago by Taylor, and also 
with several values found by Corkan & Doodson. They exhibit the typical 
frequency-splitting associated with certain multiplets in the zero-rotation 
spectrum. Further, the theoretical calculations indicate that the slopes of the 
curves of frequency versus speed of rotation change sign for some of the modes 
in rectangular geometry. Such behaviour is not present in circular basins. 
Negative modes are found to be ‘unstable’ in the sense of Corkan & Doodson; 
that is, they are transformed into positive modes for sufficiently high rotation. 
Calculations were also made for the slowest longitudinal oscillations in highly 
elongated basins to demonstrate the decreasing importance of rotation on the 
frequencies of these modes. 

Experimental workwas carriedout inaflat-bottomedsquare tank fortheslowest 
positively and negatively propagating antisymmetric modes and the slowest 
positively propagating symmetric mode. Good agreement was found between 
theory and experiment. 

PART 1. RESULTS OF THEORETICAL AND EXPERIMENTAL ANALYSIS 

1. Introduction 
The first solutions of the problem of free oscillations in rotating square and 

rectangular basins of uniform depth were derived by Rayleigh (1903, 1909). 
Rayleigh’s treatment was restricted to the case where the rotation speed w was 
small compared with the speed crof the oscillation, Some of his results wereinerror, 

t This paper is a condensed version of a Doctoral Dissertation (Rao 1965). 
$ Present affiiliation : National Center for Atmospheric Research, Boulder, Colorado. 
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and were later corrected by Proudman (1933). Taylor (1922) gave the first com- 
plete solution (valid for any w )  for the free oscillations in a rectangular basin. 
Some of his conclusions were criticized by Jeffreys (1925), who pointed out that 
there was a double infinity of modes in the rotating case and that there might 
be modes travelling in both directions of the basin (with and against the rotation). 
Defant ( 1925) subsequently gave an approximate method of simplifying Taylor’s 
analysis. 

Lamb (1924) gave an approximation to the slowest speed by a different method. 
His result is 

where v1 and v 2  are the speeds of the slowest longitudinal and slowest transverse 
modes in the zero-rotation case. In  the special case of a square v1 = v2 and (1.1) 
reduces to 

This agrees with the result of Rayleigh (1903) as corrected by Proudman (1933). 
Lamb also showed that there are wave systems travelling in both directions 
round the basin. Goldsbrough (1931) solved the problem formally for any w 
but approximated the results to small w because of computational difficulties. 
In  particular, he confirmed Lamb’s results. 

Corkan & Doodson (1 952) treated the case of a square sea by direct numerical 
integration of the dynamic equations and obtained frequency values a t  a few 
rotation speeds for the slowest positively (in the same direction as rotation) 
and negatively (opposite the direction of rotation) propagating antisymmetric 
modes. (In an antisymmetric mode, the surface elevation a t  two points diagon- 
ally opposite with respect to the centre is the samein magnitude but opposite 
in sign; for a symmetric mode both the sign and the magnitude are the same.) 
They found that negative waves are ‘unstable’ in the sense that these waves are 
transformed into positive waves at high rotations. 

The most recent investigation of the free oscillations in rotating rectangular 
basins is that of Van Dantzig & Lauwerier (1960). They obtained a solution valid 
for any o but approximated the results to small values of o. The explicit results 
obtained by them are 

(a2 - v!) (a2 - v$) = 2 5 6 ~ - * ~ ~ ~ ~ ,  (1.1) 

c- v1 = * 8n-2o. (1.2) 

0 / v l  = 1 * 0 * 4 0 5 ( 2 ~ / ~ , )  + 0 * 1 3 8 ( 2 ~ / ~ , ) ~  + . . . (1.3) 

for a square. The minus sign refers to the slowest positive antisymmetric mode 
and the plus sign to the negative mode. This extends the approximation (1.2) 
of Lamb and Rayleigh by one more order in w. For a 2 x 1 rectangle Van Dantzig 
& Lauwerier give an explicit result only for the lowest order in o for the slowest 
positive antisymmetric mode 

F / V ~  = 1 - 0 * 3 0 2 ( 2 ~ / ~ 1 ) ~ ,  (1.4) 

which agrees with the result of Rayleigh (1909) as corrected by Proudman 
(1933), when specialized to the case of a 2 x 1 rectangle. 

It is clear from this brief survey that the solution of the problem of free 
oscillations in rotating rectangular basins is far from being complete. The past 
studies, in addition to being restricted to small rotations, do not contain any 
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information on the behaviour of the higher modes and so the problem is re- 
examined here in detail. computations were made for the frequencies and modal 
structures of several of the lowest symmetric and antisymmetric modes in a 
square and a 2 x 1 rectangle. The frequency results obtained from the present 
investigation for the slowest positive and negative antisymmetric modes in a 
square and the slowest positive antisymmetric mode in a 2 x 1 rectangle are 
presented in figure 1 along with the results from the past investigations. In  this 
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FIGURE 1. Frequency of oscillation (a/v,) in square andrectangular basins of uniform depth, 
as a function of rotation speed (2w/v1). The solid curves are the results of the present 
calculation: curves I and 2 correspond to the slowest positive and negative modes in a 
square and curve 3 to the slowest positive mode in a 2 x 1 rectangle. Also shown are 
Corkan & Doodson’s (1952) results for a square (FJ ) and Taylor’s (1922) result for a 2 x 1 
rectangle (El). Curves 4 and 5 show the results of Van Dantzig & Lauwerier’s (1960) 
perturbation analysis for the slowest positive and negative modes in a square, valid through 
the second order of Bwjv,. 

diagram the frequency of oscillation c and the angular speed of rotation o are 
non-dimensionalized by vI, the slowest zero-rotation frequency. It is seen that 
there is very good agreement between the present and the past results. Figure 1 
also shows the incompleteness of the picture obtained from the past investigations 
alone. The complete results obtained from the present study are given in a later 
section. 

Computations were made also for the lowest antisymmetric mode in 4 x 1 and 
6 x 1 rectangles to show the decreasing importance of rotation on the frequen- 
cies of these modes. Also, experimental work was carried out in a square tank to 
determine the frequencies of the slowest positive and negative antisymmetric 
modes and the slowest positive symmetric mode, for comparison with the theory. 
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In  the following we present a brief discussion of the method of solution and 
then the theoretical and experimental results. An outline of the mathematical 
analysis is given in part 2 and a summary is given in part 3. It is possible to 
read part 1 with little or no reference to part 2. 

2. Method of analysis 

geneous water mass are (Lamb 1932, $207) 
The dynamical equations for free, quasistatic motion in an inviscid, homo- 

and 

avpt = - gvg +f[v] 
a p t  = -V.HV. 

Here V is the horizontal velocity vector; 6 is the fluctuation of the free surface 
above its equilibrium level; g is the acceleration of gravity; f = 2wsin$, 
where w is the angular speed of the earth's rotation and 4 is the latitude; His the 
equilibrium depth of the sea; V denotes the horizontal gradient operator; t 
is the time; and [V] indicates a 90-degree clockwise rotation of V in the horizontal 
plane. For an enclosed sea, the boundary condition is 

HV, = 0, (2.3) 

where V, is the component of V normal to the coast. 
In  the absence of rotation equations (2.1), (2.2), (2.3) permit standing modes 

of oscillation in a rectangular basin (0 < x < a;  0 < y < b). For the case of 
uniform depth, the explicit solutions for the standing oscillations are: 

(2.4) i 
u = a-'lcnsin (a-llcnz) cos ( b - l h y )  sin (vt +A),  

w = b-lln cos (a-lknx) sin ( b - l h y )  sin (vt + A), 
and 5 = g-lv cos (a - 'k~z )  cos (b-'Z~y) C O S ( V ~  + A), 

where k and 1 are any two integers, A is an arbitrary phase angle, and the zero- 
rotation frequency v is given by 

v = n[(k2/a2+ Z 2 / b 2 )  qH]k  (2.5) 

In  (2.4), (u, w) are the components of V along the axes x, y in the horizontal plane. 
When the basin is rotating, it is not possible to write down simple solutions, such 
as (2.4), to describe the normal modes. In  this case, the oscillations consist of 
wave systems travelling around the basin either in the positive or in the 
negative direction. 

The principle used here in solving the normal-mode problem in the rotating 
case is based upon a method formulated by Proudman (1916), in which the 
velocity field V is partitioned uniquely into an irrotational part V+ and a rota- 
tional part V@, each of which is made to satisfy the boundary condition (2.3). 
Then expansions for V@, V@ are obtained in terms of certain orthogonal functions 
which also satisfy (2.3), and the expansion coefficients are determined so as to 
satisfy the dynamic equations (2.1) and (2.2). 

In  the following sections we present the results of the theoretical analysis. 
Before proceeding to do so, it is necessary to explain the notation that is used to 
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enumerate the modes. Consider the continuous transformation of a particular 
mode as the rotation of the basin goes to zero or, in other words, as f -+ 0. 
If the frequency at  f = 0 is a singlet, that is, if there is no other mode with the 
same frequency, then in this limit the modal configuration is that of a particular 
standing mode (2.4), and the original mode at  f =l= 0 can be identified unam- 
biguously as the ‘(k, I )  mode’, where (k, E )  are the wave-numbers of the limiting 
zero-rotation standing mode. On the other hand, if the frequency at f = 0 
is a multiplet of order r > 1 (meaning that there are r distinct standing modes 
having this frequency), then in this limit the modal configuration is a particular 
combination of r standing modes, each of the type (2.4). In  order to associate 
the original mode at f $. 0 with just one of these zero-rotation standing modes, 
we adopt the ad hoc procedure of perturbing the dimensions of the rectangle 
through a slight increase in the length of the side parallel to the x-axis. This has 
the effect of resolving the multiplet into r singlets, one of which is the zero- 
rotation limit of the (slightly perturbed) original mode. 

In  summary, with every mode at  f $. 0 we associate a certain zero-rotation 
standing mode, and we identify the mode at  f =k 0 by means of the wave-numbers 
of this standing mode (even though there may be little resemblance between 
the two). 

3. Modal frequency 
The results described in this and $54 and 5 were obtained by means of a 

high-speed computer. (The method of computation is given in part 2.) The 
effect of rotation on the frequency was investigated specifically on twelve modes 
in a square and twelve modes in a 2 x 1 rectangle, namely those which a t  zero 
rotation are the slowest six antisymmetric and the slowest six symmetric modes. 
(The zero-rotation modes are antisymmetric if k + l  is odd and symmetric if 
k+Z is even in (2.4).) The modes in question are identified by the first column 
in tables 1 and 2 in accordance with the notation explained at the end of $2. 
The frequency values and rotation speeds in these tables arenon-dimensionalized 
by the frequency vl of the slowest zero-rotation oscillation, given by (2.5) 
with (k, Z) = ( 1 , O ) .  The range of rotation considered is 0 6 f/vl < 2.25 for anti- 
symmetric modes (table 1) and 0 < f/vl < 2.0 for symmetric modes (table 2). 

The contents of tables 1 and 2 are illustrated graphically in figure 2. This 
diagram exhibits the effect of rotation on all modes of the zero-rotation spectrum 
with frequencies in the range v/vl < 4 for the square and v/vl < 5 for the rectangle. 
The solid lines correspond to antisymmetric modes and the dashed lines to sym- 
metric modes. The slowest mode of all is the antisymmetric mode (1, 0) which 
consists of one wave travelling in the positive direction of the basin; that is, in 
the same direction as that of rotation. As seen in figure 2, the (1,0),  (0, 1); (1, 2), 
( 2 , l ) ;  (3,0), (0 ,3)  modes in a square are examples of doublets in the zero-rotation 
frequency spectrum for antisymmetric modes. Other doublets can be seen from 
an examination of the figure. These multiplets in the zero-rotation spectrum are 
split into distinct frequencies on the introduction of rotation. 

A comparison between the frequency behaviour of. the slowest positively 
propagating antisymmetric mode ( 1 , O )  in a square and the corresponding mode 
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in a circular cylinder, which is the (1,l) mode in the (0, r)-direction (for the latter, 
see Lamb 1932, $210) revealed the curious feature that the mode in the square 
has a frequency variation almost identical with that of the corresponding mode in 
a circle, within the accuracy of the present computations, in the rotation range 

7 

2.25 Mode 0 0-25 0-50 1.00 1.25 1.50 1.75 2.00 

Square 

1.0 0.907 0.831 0.723 0.686 0.657 0.635 0.617 
1.0 1.110 1.235 1-509 1.630 1.706 1.737 1.739 
2-236 2.173 2.119 2.058 2.074 2.151 2.290 2.468 
2.236 2.307 2.384 2.540 2.610 2.666 2.705 2.733 
3.0 2.997 3.012 3.092 3.157 3.241 3.347 3.471 
3.0 - 3.057 3.181 3.263 3.356 3.453 3.547 

Rectangle (2 x 1) 

1.0 0.995 0.982 0.942 - 0.897 0.876 0.857 
2.0 2.015 2.058 2.201 - 2.336 2.364 2.369 
2.828 2.811 2.777 2.726 - 2.776 2.868 2-998 
3.0 3.025 3.083 3.235 - 3.402 3.483 3.554 
4.123 4.127 4.138 4.177 - 4.233 4.272 4.325 
4.472 4.472 4.472 4.489 - 4.556 4.609 4.670 

TABLE 1. Frequencies u/vl of antisymmetric modes as a function of 
rotation speed f/vl 

0.602 
1.730 
2.666 
2.742 
3.612 
3.625 

0-840 
2.361 
3.150 
3.615 
4.397 
4.735 

fl.1 
A c 1 

Mode 0 0-25 0.50 1.00 1.50 2.00 

Square 

(1, 1) 1.414 1.405 1.380 1.313 1.253 1.206 
( 2 9  0 )  2.0 2,010 2.038 2.131 2.216 2.251 
(0, 2) 2.0 2.022 2.084 2.293 2.577 2.902 
( 2 ,  2 )  2.828 2.821 2.805 2.795 2.881 3.094 
(1, 3) 3.162 3.166 3.176 3.213 3.254 3.297 
(3, 1) 3.162 3.182 3.235 3.404 3.624 3.870 

Rectangle (2 x 1) 

( 2 ,  0 )  2.0 1.978 1.930 1-828 1.742 1.675 
(1, 1) 2.236 2-266 2-338 2.528 2.732 2.896 
(3, 1) 3.606 3.599 3.584 3.547 3.542 3.622 
(0, 2) 4.0 4.006 4.022 4.084 4.170 4.257 
(4, 0 )  4.0 4.013 4.049 4.172 4.342 3-549 
(2, 2) 4.472 4.478 4.497 4.570 4.693 4.865 

TABLE 2. Frequencies a/vl of symmetric modes as a function of rotation speed f/vl 

f/vl < 2-25. Specifically, let o(1, 1) denote the frequency of the (1, 1) positive 
mode in a circular cylinder, and let v( 1, 1) denote the zero-rotation frequency of 
this mode. Then, if the values of o(1, l ) / v (  1 , l )  areplottedas afunctionoff/v(l, l ) ,  
the points fall on the curve of the ( 1 , O )  mode in a square (the lowest curve in the 
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left panel of figure 2) within the accuracy of computation. This correspondence 
appears to be coincidental since it is not found for the corresponding negative 
modes or for the higher modes. 

There are other differences in the frequency behaviour between square or 
rectangular basins and circular basins. In  the circular basin, restricting attention 

FIGURE 2. Frequency ( r / v l )  vs. rotation speed ( f / v , )  for various modes 
in square and 2 x 1 rectangular basins. 

to the azimuthal modes, each zero-rotation frequency is a doublet which splits 
into two distinct frequencies when f + 0. The mode with the lower frequency 
(absolute value) always propagates in the positive direction and the one with 
the higher frequency in the negative direction. Let integers i and j represent the 
wave-numbers in 8- and r-directions. Then in each set (a set being defined as the 
infinite number of pairs generated by all j for a fixed i )  for the first positive wave 
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alone there is a value off ( = f *, say) for which a becomes equal to f .  For f < f*, 
c > f and, for f > f*, a < f .  For all the other modes, c > f for all f. Moreover, 
for all modes a/f decreases as f increases, and tends to the value 1 in the limit 
f --f co, except for the first positive mode of each set, for which c/f -+ 0 ;  that is, 
each set of modes belonging to a given azimuthal wave-number has only one 
member with frequency in the range 0 < cr < f. It is not obvious how to compare 
this feature of the circular geometry with what happens in rectangular geometry, 
but, if we consider a set here as corresponding to a fixed k and all I ,  an examina- 
tion of figure 2 shows that for both square and rectangular basins it is possible to 
have a < f for more than one member of each set iff is greater than some critical 
value depending upon the mode. 

Another very interesting feature of figure 2' is the non-monotonic behaviour 
of some of the frequency curves. (This does not happen in the case of a circular 
cylinder.) As an interesting consequence of this behaviour some of the modes have 
frequencies exactly equal to their zero-rotation frequencies a t  certain values of 

Taylor (1922) suggested that the roots of the period equation for the sym- 
metric modes may fall between the roots for the antisymmetric modes. However, 
this depends on how one examines the roots. For example, even in the zero- 
rotation case if one considers the entire spectrum of frequencies obtained from 
(2.5), the roots of the antisymmetric and symmetric modes do not fall between 
each other. The same is true in the rotating case also, as can be seen from figure 2. 
On the other hand, if one considers the zero-rotation frequency spectrum ob- 
tained by taking a fixed k (or E) and letting E (or k) vary, then the roots of the 
antisymmetric modes fall between those of symmetric modes. Presumably 
this may happen in the rotating case also, in general. Within the range of the 
present computations it does happen so, as shown by figure 2. 

Consider now the frequency behaviour in highly elongated basins. In  table 3, 
the frequencies of the lowest longitudinal mode for f / v l  = 0, 0.5, 1.0 for various 
elongations are given. It is evident from this table that the effect of rotation on 
the frequencies of the longitudinal oscillations becomes less important as the 
basin becomes more elongated. In  the limit, these oscillations are transformed into 
Kelvin waves (Lamb 1932, $208). Hence, in treating the dynamics of a basin like 
Lake Erie for example (a/b = 6 and flul = 0-8), ignoring the effect of the earth's 
rotation on the periods of oscillation is justifiable even thought is not small com- 
paredwith the slowest oscillation speed. One can then make allowance for rotation 
effects on the motions by a Kelvin-wave hypothesis, as has been done by 
many investigators (for example, by Platzman & Rao 1964 in their study of the 
free periods of Lake Erie). That this gives reasonable results even from the point of 
view of modal structure will be shownlater. 

Consider now the purely transverse modes. In  very elongated basins one would 
expect these modes to assume the form of waves with horizontal crests, the so- 
called Sverdrup waves, since the boundaries a t  x = 0 and a are too distant to 
affect significantly the main part of the motion. The frequency equation for 
these waves is (Proudman 1953, § 132) v2 = v2 + f 2, where u is the zero-rotation 
frequency of the purely transverse modes, given by (2.5) with k = 0. In  table 4 

f * O .  
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the exact frequency values of the lowest transverse mode for f / v l  = 0, 0.5, 1.0, 
and for various elongations, are presented, together with the corresponding 
Sverdrup-wave frequencies. From an inspection of this table it is clear that the 
actual frequencies tend to those for a Sverdrup wave as the elongation ratio 
aib increases. 

f l y 1  
r A 

------7 

alb 0 0.5 1.0 

1 1.0 0.831 0.723 
2 1.0 0.982 0.942 
4 1.0 0.998 0.992 
6 1.0 0.999 0.997 

TABLE 3. Frequency a / v l  of lowest longitudinal mode (1, 0) as a function of 
rotation speed flyl for various basin elongations alb 

f I V l  
r A 7 

alb 0 0.5 1.0 

1 1.0 (1.0) 1-235 (1-118) 1.509 (1.414) 
2 2.0 (2.0) 2-058 (2.062) 2.201 (2.236) 
4 4.0 (4.0) 4.030 (4.031) 4.117 (4.123) 
6 6.0 (6.0) 6.020 (6.021) 6.080 (6.083) 

TABLE 4. Frequency u/vl of lowest transverse mode (0, 1) as a function of rotation speed 
f/vl for various basin elongations. Sverdrup-wave frequency (v2+ f2)*/vl is given in 
parentheses 

4. Modal structure 
The perturbation height field g of any mode in the rotating case may be 

written as 

Here A(x,  y) is the amplitude and 8(x, y) is the phase of high water at  a point 
(x,y). The modal structures are presented here in terms of co-amplitude lines 
(contours of A )  and co-tidal lines (contours of 0). The amplitude A is normalized 
to make the average value of A2 over the basin equal to 100 in all cases. The 
co-tidal lines are drawn at intervals of one-twelfth period; that is, in 8-incre- 
ments of 30 degrees through the range 0 < 8 < 360'. The co-amplitude and 
co-tidal lines in figures 3-6 were drawn from values calculated at points equally 
spaced at intervals Ax = 0.025a = Ay. This gives a resolution of 40 x 40 points 
for the square, and 40 x 20 points for the 2 x 1 rectangle. In  all cases the rotation 
of the basin is positive (counter-clockwise) and each figure shows results for a 
square and for a 2 x 1 rectangle. 

The slowest positively propagating mode (1,  0 )  is presented in figure 3, for 
rotation speedflv, = 2. This mode, in both basins, consists of one wave travelling 
in the positive direction about an amphidromic point at  the centre of the basin. 
(It may be noted, for comparison, that the co-tidal lines in the zero-rotation 

34-2 
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case are straight lines and are fixed in space for all time.) The amplitude of 
oscillation is zero at  the amphidromic point and increases outward; it reaches it 
maximum value at the corners. This structure of the mode remains essentially 
unchanged with increasing rotation. In  the sequel we refer to an amphidromic 
point as positive or negative according as the associated wave system rotates in 
the positive (counter-clockwise) or negative (clockwise) sense. 

Mode 
( L O )  

- Phase --- Amplitude 

FIGURE 3. Structure of the slowest positive antisymmetric mode in a 2 x 1 rectangle and in 
a square. In  this and the following diagrams, 0 represents a positive amphidromic system 
and a negative amphidromic system. 

Figures 4(a),  ( b )  and (c) represent the slowest negative mode at different values 
of flvl. Taking first the case of a square, we see that for low rotation this mode 
consists of one wave travelling in a clockwise direction about an amphidromic 
point at the centre of the basin, as shown in figure 4(a) .  As the rotation increases, 
the structure of this mode changes, in marked contrast to the slowest positive 
mode. In  particular, for a certain value of f/vl (not precisely determined in this 
investigation, but in the range 1.0 < flul < 1.1) a system of four positive amphi- 
dromic points enters the basin from the boundaries, as shown in figure 4(b ) .  
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As the rotation increases, these points move towards the centre of the basin, 
and the positive wave systems associated with them eventually dominate 
over the central negative wave. Even though there are five amphidromic points, 
the arrangement is such that the central negative-wave region is surrounded by 
a system of three waves which travel around the boundaries in a positive direction, 

FIGURE 4 (c) .  The slowest negative antisymmetric mode at rotation higher 
than in figure 4 (b).  

as can be seen by careful examination of the co-tidal lines of figure 4 ( b ) .  As the 
rotation increases, the inner negative wave region contracts and the amplitude 
of this wave decreases. At f/vl = 1.5 (figure 4(c)) the amplitude of the negative 
wave is practically zero. Corkan & Doodson (1952) found from their computa- 
tions three positive waves and no negative wave when a/f = 1 for this mode. 
However, from the present computations it does not appear that the central 
nega.tive core entirely disappearsin asquare. Evenat f/vl = 2.0, forwhich cr/f < 1, 
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the negative wave is still present a t  the centre, but with practically negligible 
amplitude. 

The upper parts of figures 4(a), ( b )  and (c) show the slowest negative anti- 
symmetric mode in a 2 x 1 rectangle. In  this case, even at the low rotation 
f/vl = 0.1, there is one negative wave system (figure 4(a)) at the centre of the 
basin and two positive wave systems with amphidromic points located one on 

- Phase ---_ Amplitude 

FIGURE 5.  The slowest positive symmetric mode. 

either side of the centre of the longitudinal axis. As the rotation is increased 
(figure 4 ( b ) ) ,  two more positive amphidromic systems come inside the basin, 
one on either side of the centre on the transversal axis, for a value off/vl in the 
range 1.4 <f/vl < 1.5. Finally byf/v, = 1.75 (figure 4(c)) the central negative 
amphidromic system disappears and one has three positive waves in the basin 
with amphidromic points located on the longitudinal axis. 

Now coming to the symmetric modes, figure 5 shows the slowest positive 
modes belonging to this family in a square and a rectangle. The system consists 
of two waves travelling in the positive direction, and the structure remains 
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unchanged with increasing rotation. In  the square both the waves travel about 
an amphidromic point at the centre of the basin, whereas in the rectangle each 
wave has a separate amphidromic point located symmetrically with respect to 
the centre on the longitudinal axis. At f / v l  = 1.0, figure 6 (a )  shows that the cor- 
responding negatively propagating modes also consist of two waves. Just as in 
the case of the first negative antisymmetric mode, these modes undergo a 
change in structure with increase in rotation : positive amphidromic points 
external to the basin gradually move across the boundary into the basin. The 
situation when flul = 2 is shown in figure 6(b ) .  

The higher modes become very complicated in their structure and hence no 
attempt is made to present the details here except to mention that negative 
amphidromic systems always appear to be ‘unstable’, that is, to give way to 
positive amphidromic systems. 

In  summary, it is possible to say that, for antisymmetric modes in any rect- 
angle, the zero-rotation (1, 0) mode is transformed into the slowest positive 
mode and the (0 , l )  mode into the slowest negative mode. For symmetric modes, 
the slowest zero-rotation mode of this family is transformed into a positive mode 
consisting of two waves. The antisymmetric modes consist of an odd number of 
wave systems and the symmetric modes an even number. The negative modes 
in all cases are ’unstable’ in the sense of Corkan & Doodson. Recalling figure 2, 
we see that, in the case of the lowest antisymmetric and symmetric modes, the 
positive waves follow the low-frequency branch (along which frequency decreases 
with increasing rotation) and the negative waves the high-frequency branch. 

In  $ 3  we showed that the frequency of the slowest longitudinal oscillation 
tends to that of a Kelvin wave as the elongation of the basin increases. We now 
show that the structure of the oscillation also resembles that of a Kelvin wave. 

Consider the zero-rotation ( 1 , O )  mode in a rectangle and take unit amplitude 
for the corresponding 5 in (2.4). In  the rotating case, if we assume that the trans- 
verse accelerations are small, a good approximation to the transverse slope 
may be obtained from the geostrophic relation as in the case of a Kelvin wave. 
Integration (with respect to y) of the geostrophic equation would then give the 
added surface displacement 6 caused by rotation. The total disturbance a t  any 
point is the sum <+ [, which can be written 

g+  [ = 4 x 2  y) COB [v t -  ?/)I, 
~ ( z , y )  E [cos2na-lz+c-2f2(y- +b)2sin2mr1z]&, 

8(x, y) E arc tan [ - c-lf(y - i b )  tan nu-%]:], 

where A is the amplitude and 8 is the phase of high water at any point. (For de- 
tails of the derivation see Defant 1961.) 

The amplitudes and phases of high water along the north and south boundaries 
of the basin obtained from the exact analysis of the problem and from the 
above approximate Kelvin-wave hypothesis are shown in figure 7 for the case 
of a/b = 6 and f / v l  = 1.0. (The northern and southern boundaries are those 
parallel to the longitudinal x-axis.) Also shown for comparison is the situation 
in the non-rotating case. From these it is clear that there is excellent agreement 
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between the exact calculation of the surface profile, and the approximate 
Kelvin-wave calculation. The Kelvin-wave hypothesis transforms the original 
standing wave into an amphidromic system which rotates in a positive direction 
around the basin with the same period as the zero-rotation mode. 

%la 
 BIG^ 7. Amplitude (lower diagram) and phase of high water (upper diagram) for the 
slowest longitudinal oscillation on the boundaries of a 6 x 1 rectangular basin with rotation 
speedflv, = 1. The solid line is the exact calculation, the dots are the results of applying 
the Kelvin-wave hypothesis and the dashed line is the situation with zero rotation. 
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[(l, 0) Mode] 

5. Energy partition 
In  the zero-rotation case the total energy is partitioned equally between 

potential energy P and kinetic energy K of the motion (which is purely irro- 
tational). When the potential energy is a maximum, kinetic energy is zero and 
vice versa. In  the rotating case the kinetic energy of the motion can be resolved 
into two parts: K = K4 + K@, where K4 is the kinetic energy of the irrotational 

I 1 Irrotational kinetic energy 

0.5 

(o, Mod#'otential energy 
0 I I I 

0 0.5 1 -0 1.5 2.0 
1-01 I I I I 

Irrotational kinetic 

0.5 

- - 1  Potential energy I 

05 

0 
0.5 1.0 1.5 2.0 

I I I 

I Irrotational kinetic energy 

0.5 

FIGURE 8. Energy partition as a function of rotation in a square basin for the modes 
indicated; abscissa, rotation speed f /ul.  Shaded region represents rotational kinetic 
energy. 

part of the motion and K@ is that of the rotational part. Moreover, at no instant 
can any one of P, K4 and KP be zero. 

Figure 8 shows the partitioning of total energy between P, K6 and K@ as a 
function of rotation speed flul for some of the slowest antisymmetric modes in a 
square. In  this figure the total energy is normalized to unity for all flu1. 

An inspection of figure 8 in conjunction with figure 2 shows that in modes 
( 1 , O )  (0,  I), (2 , l )  (for which the computations indicate that 0 for large f)  
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the total energy primarily consists of P and K@ a t  large values off. In  the ( 2 , l )  
mode (which appears to belong to the case for which c/f -+ 1 for large f )  the total 
energy seems to be partitioned primarily between K* and K6 for large f. Figure 8 
also shows that for positive wave propagation P increases with increasing f 
as in the case of the ( 1 , O )  mode as well as the (0,l)  mode for values off/vl > 1. 

6. Experimental results 
The laboratory experiments were performed in a square tank (mean value of 

a = 48-69cm and b = 48.49cm). The working fluid was distilled water, to 
which an organic fluid ‘Kodak Photoflo’ was added in proportion of 
by volume to reduce the surface tension to about 30 dynes em-l. The tank was 
rotated by mounting it on a turn-table and the modal generation was achieved 
by means of two oscillators. The amplitude response of the water-level oscillation 
in the tank was monitored by two wave-height probes mounted in the tank. 
The experimental arrangement is shown in figure 9 (plate 1). The experimental 
work was done for a depth given by H/a = 0.125 and was limited to the slowest 
positive and negative antisymmetric modes and the slowest positive symmetric 
mode. 

Table 5 gives a summary of the experimental values of a/v ( = To/T). The values 
of the zero-rotation periods (To) are those obtained experimentally. The mean 
values for To are 

Mode To (sac) 

(1, 0) 1-295 
(0, 1)  1.295 
(1, 1) 0.927 

In  table 5 the upper and lower bounds are given for the experimental estimates 
of T0/T In  calculating the ratio 2w/v, the value of v1 used is 2nl1.295 = 4.582 rad 
see-l. 

The arithmetic mean values of the ratio a/v  in table 5 are plotted in figure 10, 
along with the corresponding theoretical curves. No corrections were applied 
to the theoretical periods for non-quasistatic effects, on the working assumption 
that these effects would be of the same order for both the rotating and non- 
rotating periods, and that, when the theoretical ratio CT/V is taken, the correction 
factor effectively drops out. Figure 10 shows good agreement between theory and 
experiment. The maximum error obtained is 6 % for the ( 1 , O )  mode at  w = 4 rad 
sec-1. However, at  this speed of rotation the free surface assumes a very pro- 
nounced parabolic shape and it is not surprising that results of planar theory 
(which ignores the free-surface curvature) do not agree well with experimental 
results. The quantitative agreement between theory and experiment for the 
(0 , l )  and ( 1 , l )  modes is good. (The (0,l)  mode could not be generated beyond 
w = 2 rad see-l.) 

It will be shown in part 2 that there are some modes in a rectangular basin for 
which c = v+O(w2) in the limit of w+O and some for which CT = v+O(w).  
Under rotation the equilibrium configuration of the free surface is a paraboloid 
and the depth variation involves terms of’ O(w2).For this reason the planar 
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approximation, in which the free-surface curvature is ignored, is inconsistent 
for modes for which the frequency shift induced by rotation is also of O(w2).  
On the other hand, the planar approximation is valid, at  least for small values 
of w ,  for modes for which the frequency shift is of O ( w ) .  A simi1a.r situation occurs 

0.5 

0 

- - 

I I 1 

2WlVI 

FIGURE 10. Comparison of the experimental (dots) and theoretical values 
of CT/Y for various speeds of rotation in a square basin. 

w 
(rad see-1) 

0 
0- 5 
1.0 
1.5 
2.0 
2.5 
3.0 
4.0 

0 
0.206 
0.412 
0.618 
0.824 
1.030 
1.237 
1.649 

7 

( 1 9  0 )  

1.0 
0.920-0*917 
0.857-0.855 
0.802-0.80 1 
0.758-0'756 
0.7 2 8-0' 7 2 7 
0.703-0*701 
0.689-0.687 

Mode 
h 

(0, 1) 
1.0 
1*084-1*082 
1 * 1 7 4- 1.1 7 1 
1 9 275-1.27 1 
1.370-1.365 

(19 1) 
1.0 

0.973-0.971 
0.957-0.955 
0.941-0.938 
0.925-0.92 1 
0.9 16-0'9 12 

- 

TABLE 5. Experimental values of the frequency ratio crlv in a square tank with depth ratio 
Hla = 0.125, as SL function of rotation frequency w ,  for the slowest positive antisymmetric 
mode (1, 0), the slowest negative antisymmetric mode (0, 1) and the slowest positive sym- 
metric mode (1, 1) 

in the case of a circular cylinder, in which the planar approximation is incon- 
sistent for axi-symmetric modes as first pointed out by Fultz (1962), whereas it 
is consistent for azimuthal modes (Miles 1964). 

This inconsistency in the theoretical formulation should produce a discrepancy 
between the theoretical and experimental results. However, a direct comparison 
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of the frequency values, such as that in figure 10, is not capable of bringing this 
fact out clearly. For this purpose, by analogy with the axi-symmetric modes in 
a circular cylinder (see Fultz, 1962), we define a special parameter 

E = (G2- v2)/4w2. (6.1) 

In  any rectangle, for those modes for which the frequency for small w is given by 
u = v + O ( d ) ,  we have u2 = v2 + O(w2), and the parameter E is finite in the limit 

0 

FIGUFCE 11. Comparison of the experimental and theoretical values of the ‘ellipticity 
parameter’ E for various speeds of rotation. The discrete points are the experimental 
results with v for (1, 0) ,  A for (0, 1) and for (1, 1) modes. 

On the other hand, for modes for which u = v + O ( w ) ,  we have u2 = v2+ O(w) .  

(6 .2 )  

For this class of modes, define 

The theoretical (planar) and experimental values of E as defined in (6.1) and (6.2) 
are shown in figure 11. It is seen that the agreement for the ( 1 , O )  and (0 , l )  
modes (for which cr = v +  O(w) )  is good, but the agreement for the ( 1 , l )  mode 
(for which CT = v + O(w2))  is very poor and shows the inconsistency of the planar 
approximation for this class of modes. 

E = ( a 2 -  v2) /2wv. 
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PART 2. THEORETICAL ANALYSIS 

7. The spectral-dynamic equations for a basin with arbitrary con- 
figuration 

The treatment used here is based upon a method developed by Proudman 
(1916) whereby the equations of ‘tidal’ motion are transformed into a set of 
ordinary differential equations in an infinite sequence of purely time-dependent 
parameters. (Proudman’s formulation shows that the parameters are analogous 
to the principal co-ordinates of a mechanical system having, in general, a 
countably infinite number of degrees of freedom.) Here we shall present only 
an outline of the analysis. (For details see Proudman 1916 or Rao 1965.) 

The horizontal velocity V of a ‘tidal’ motion is independent of x through the 
complete depth H of a vertical column. If the motion takes place in a basin com- 
pletely enclosed by a rigid boundary on which the normal component of HV 
is zero, then V can be partitioned as V = V@ +V* in such a way that the kinetic 
energy is partitioned as K = K@ + K ~ ,  that is, 

*pJVZHdA = (V$)2HdA +&I (Vq2HdA, s s 
where dA is an element of the basin surface area. This energy partition is essential 
for the subsequent analysis, and can be made if and only if V+ andV* are expressed 
in terms of a velocity potential q5 and stream function @, as follows: 

V+ = -V$; V@ = -h-’[V$], (7.1) 
where h = H I B  is the non-dimensional ratio of the actual depth H to the basin 
mean depth 8, and [V$] indicates a 90-degree clockwise rotation of V$ in the 
horizontal plane. In  addition to (7. l), we also must impose boundary conditions 

ha$/& = 0; $ = 0. (7.2) 
It is evident from (7.1) that V# is irrotational and hV@ is non-divergent; moreover, 
(7.2) requires the normal components of hV+ and hV* to vanish separatety on 
the boundary. 

The determination of V+ and Ve in terms of V proceeds in principle by con- 
version of (7.1) into the inhomogeneous elliptic equations 

V.hV# = -V.hV; V.h-’V@ = O.[V], (7.3) 
with homogeneous boundary conditions (7.2). Since V is itself unknown, but 
must satisfy the dynamical equations (2.1) and (2.2), the actual procedure is 
to convert the dynamical equations into conditions upon q5 and $, and, having 
determined q5 and $ in this way, to reconstruct V by means of (7.1). For this 
purpose we represent q5 and @ in terms of spectra of the elliptic operators which 
appear in (7.3). Specifically, we consider the characteristic-value problems 

-V ,hV$, = ha$,, 

h a$,/an = 0 on the boundary, 

h-l@, = 0 

-V.h-’V@a = pa$a, 

on the boundary, 

(7 .4a )  

( 7 . 4 b )  
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where subscript a is a binary index used for spectral enumeration. The problems 
( 7 . 4 ~ )  and (7.46) are self-adjoint.? Therefore, the characteristic values A, and 
pa  are real, and the characteristic functions c j a  and $a are internally orthogonal 
sets. 

Since we may choose 9, and $a real, the orthogonality and normalization may 
be stated 

I (7.5) 

hV$ .V$ dA = A, dA = c~AS, ,~ ,  s S 
/hV$.V$dA = ,ua/$a$,jdA = c2ASar,\ 

where c = (gi??)+; A is the surface area of the basin; Sap = 1 or 0 according as 
a-/3 = 0 or + 0;  and we define 

Vg z -V$@; V t  -h-l[V+,] (7.6) 

in harmony with (7.1). The first equality in (7.5) comes from the use of ( 7 . 4 ~ )  and 
(7.4b) after partial integration; the second gives the orthonormality statement. 

It is appropriate now to define the (non-dimensional) expansion coefficients 

hV$.V+dA = 
c2A 

C 2 8  

(7.7) 
= ~ hV$.VdA, 's 

for representation of V+ and V+. In  view of the orthonormality (7.5), the sums on 
the right of 

a 

are least-square approximations to  V +  and V@. When the sums span the com- 
plete spectra of ( 7 . 4 ~ )  and (7.46), the equality signs are valid in this sense, with 
the usual restrictions as to quadratic integrability and continuity of V+, V @  and 
their derivatives. 

Having obtained orthogonal bases for V+ and V@, we must now establish a basis 
for the height field 6. It can be shown by making use of the continuity equation 
(2.2) that the q5a form a sufficient basis for the representation of <. For the explicit 
representation of 6 we choose 

Then the orthonormality relation for the Q is, by (7.5): 

[a = Rc-l(A,)+cj,. (7.9) 

dA = IPASap. s 
The corresponding expansion coefficients are non-dimensional : 

(7.10) 

t The factor h-l in the boundary condition of (7 .4b)  imposes a more stringent condition 
than that in (7.2); but this is necessary to make (7.4b) self-adjoint. 
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FIGURE 9. Experimental sot-up showing the tank mounted on tho turn-tahle. Thc. 
osc&it,or arrangement, and the wave-height proloos also can bc wen in the picture. 
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and give the expansion 
5 = CraQ. 

a 
(7.11) 

It must be noted that in general the series (7.11) is not termwise differentiable 
at the boundaries. 

Associated with the expansions (7.8) and (7.11) are the Parseval relations 

K# i p H  h(V#)2dA = +McZCp2,, -1 a 

-s a 

s a 

K@ ipH h(V*)2dA = ~ M c ~ E ; v Z ,  

P = ipg [2dA = -iMc2 C r:, 

where M = pRA is the total mass of fluid in the basin. Evidently P is the poten- 
tial energy, and K+ +K@+ P = iMc2  C (p2, +qZ +r%) 

is the total energy. 
Having established spectral representations of V and 6 in terms of pa ,  qa 

and ra, we now convert the dynamical equations (2.1) and (2.2) to the spectral 
domain. Differentiate pa,  qa in (7.7) and ra in (7.10) with respect to time. Since 
the limits of integration (the basin boundaries) are assumed to be independent 
of t ,  and since the characteristic functions V:, V$, [a also are independent of t ,  
the result of this differentiation is merely to introduce aV/at in place of V in (7.7), 
and a[/at in place of [in (7.10). The governing equations (2.1), (2.2) may then be 
used to eliminate aV/at and a[/at. On doing this and making use of (7.4) and (7.6)- 
(7.9), the result after some partial integrations may be written: 

a 

i = vara  +f C (aapp~  +bajqb), 
B 

(7.12) 

(7.13) 

where we use the notation 

{U,V} E c-2A-l hU.VdA 

to represent the inner product of any two vectors U, V .  The coupling coefficients 
defined in (7.13) are numerical constants which depend only upon the geometry 
of the basin and are completely determined by the solutions #,, 1c., of the charac- 
teristic-value problems (7.4). Moreover, 

s 

aap = -aB, and b,, = -c,,, (7.14) 

as is evident from the definitions. 
35 Fluid Mech. 25 
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It is apparent from (7.12) that u, is the frequency of the normal modes in the 
zero-rotation case (f = 0). Rotation introduces a coupling between the set of 
pa  and the set of q,, so that, when f + 0, the normal modes can be built up only 
through linear combinations of the sets pa, qa, ra. Equations (7.12) correspond to 
those derived by Proudman (1916). 

8. The spectral-dynamic equations for a rectangular basin of uniform 
depth 

The treatment thus far has been applicable to a basin of arbitrary shape and 
depth. We now specialize the problem for the case of a rectangular basin of 
uniform depth (h  = 1). Consider a rectangle 0 < x < a and 0 < y < 6 ,  where a 
and b are the lengths of the long and short sides (a  2 b).  Then with h = 1 the 
normalized solution of the Neumann problem (7.4 a )  is 

4, =  chi^ cos (knxla) cos ( lny/b) ,  

A, = n2(k2/a2 + 12/b2), 

where E ,  determined in accordance with (7.5) is equal to 42 or 2 according as 
kl = 0 or + 0. Here a = (k, 1) and k, 1 are any two integers, positive or zero 
(negative values being redundant). (The trivial case k = 0 = Z is excluded.) 
The wave-number vector is, strictly, n(k/a,  Z/b); however, since in a given problem 
a and b are fixed, it is more convenient to focus attention upon the integer pair 
k, 1 which specifies the variable part of the wave-number. 

For the Dirichlet problem (7.4b), the normalized solution is 

(8.2) 1 y9, = 2c,u;4 sin (knxla) sin ( h y / b ) ,  

pa = n2(k2/a2 + Z2/b2), 

where a = ( k , l )  as in (8.1). 
The characteristic functions #,, $, in (8.  1), (8.2) have certain symmetry pro- 

perties whichit is important to elucidate. If P ( x ,  y) is any position function defined 
over the rectangle, we say that it is 

(8.3) 1 antisymmetric if P(a - x ,  b - y) = - P ( x ,  y ) ,  

symmetric if P(a - x ,  b - y) = + P ( x ,  y ) ,  

for all x ,  y. Then from (8.1) and (8.2) it can be seen that q5,, y9, are 

I antisymmetric if k + I  is odd, 

symmetric if k + 1 is even. 
(8.4) 

It is important to note that alternatives (8.4) apply to all #a, $a. 
If F in (8.3) is symmetric, V F  is antisymmetric and vice versa. Moreover, the 

product of any two functions is symmetric if the functions have the same sym- 
metry, and is antisymmetric if they have opposite symmetry. Consequently, 
from the definitions of the coupling coefficients given in (7.13), it  follows that 
(with h = 1) aap vanishes if a and /3 have opposite symmetry, since then 
V#, . [V#!] is antisymmetric and the integral of an antisymmetric function 
over the rectangle is clearly zero. Similar considerations apply to the other 
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coupling coefficients. We come therefore to the important conclusion that in the 
spectral-dynamic equations (7.12), p ,  cannot be coupled to either pb or qa and qa 
cannot be coupled to pb or qa unless a and p belong to elements having the same sym- 
metry. This means that the functions and $, are either all symmetric or all 
antisymmetric. Another way to state this conclusion is : €he normal modes of free 
oscillation in a rectangular basin are either symmetric or antisymmetric (Taylor 
1922). 

The foregoing discussion shows that the complete set of spectral elements 
(8.1) or (8.2) can be divided into two mutually exclusive, 'uncoupled' subsets 
on the basis of the type of symmetry defined in (8.3). Within each of these sub- 
sets a further subdivision can be made, which also has an important bearing on the 
coupling between spectral elements as will now be explained. 

We have seen that k + 1 must be odd for all spectral elements of an antisym- 
metric mode. This parity can occur in one of two ways: k odd and 1 even, or k 
even and 1 odd. It will be convenient to use a prime to identify elements of the 
latter group, so that henceforth 

for antisymmetric elements 

a E (k, 1) means k odd, 1 even; 

a' = (k', 1') means k' even, 1' odd. 
(8.5) 1 

The importance of this grouping of antisymmetric elements comes from the fact 
that there can be no coupling between two elements if both are in the a-group or 
if both are in the a 'goup.  

To prove the latter statement, it is necessary to examine additional symmetry 
properties of the characteristic functions. In  particular, a function F(x, y) can 
have x-symmetry ( + ) or x-antisymmetry ( - ) according as 

F(a-x, y) = -t F(x, y). 

Similarly, it  has y-symmetry or -antisymmetry according as 

F(x, b - y) = k p(x ,  y). 

It is easy to see from (8.1) and (8.2) that, with a and a' as in (8.5), and $at 
have x-antisymmetry and y-symmetry, whereas 4,) and $, have x-symmetry 
and y-antisymmetry. (Evidently all of these functions have joint (x, y) anti- 
symmetry in the sense of (8.3).) On this basis, it can be shown directly from (7.13) 
that all coupling coefficients vanish if the coupling is of the type a, /3 or a', p'. 

Similar considerations apply to the symmetric modes. By (8.4), symmetric 
modes are built up from spectral elements for which k + 1 is even, so by analogy 
with (8.5) we adopt the convention that 

for  symmetric elements 

(8.6) } 
a = (k, 1) means k odd, 1 odd; 

a' = (k', 1') means k' even, 1' even. 

From considerations of x-symmetry and y-symmetry, exactly as in the case of 
antisymmetric modes, we find tLat all coupling coefficients between symmetric 
elements vanish if the coupling is of the type a,  p or a', p'. 

35-2 



548 Desiraju B. Rao 

We have now divided the complete set of spectral elements (8.1) and (8.2) 
into four subsets, two of which are antisymmetric (a and 6’ as in (8.5)) and two 
symmetric (a and a’ as in (8.6)). There is no coupling between antisymmetric 
and symmetric elements, and there is no coupling of type a, /3 or a’, p’. It follows 
that for either antisymmetric or symmetric modes the spectral-dynamic equa- 
tions (7.12) can be written separately for a-elements and &‘-elements as follows 

a i dpaldt = vara +f (aaa*Pa* + baa,qa,)> 

and 

(8.7a) 

(8.7b) 

The middle equation in each of these sets has been simplified by introducing 
the fact that for a basin of uniform depth all coupling coefficients of the d-type 
in (7.13) are zero. 

In  (8.7) there are, formally, six types of coupling coefficients. However, accord- 
ing to (7.14) we have 

a,,, = -aaa,; b,, = -c aa’7 - ca’a = -baa,, (8.8) 

so the three types required in (8.7b) are in fact expressible in terms of the three 
required in (8.7a). By direct substitution of (8.1) and (8.2) into the definitions 
(7.13), the following explicit formulae are found for coupling coefficients applic- 
able to a rectangular basin of uniform depth: 

In  deriving these results, use is made of the fact that k: + k’ and 1 + I‘ are of odd 
parity, according to (8.5) and (8.6). It should be noted that the rectangle dimen- 
sions a, b enter the preceding formulae only through the ratio alb. This can be 
seen by examining the expressions for A, and pa in (8.1) and (8.2). Prom these 
expressions it is also evident that ha = pa. 

In  working toward a solution of the spectral-dynamic equations (8.7), it  is 
necessary to order each of the sets a and a’ as a one-dimensionalarray. The specific 
order in which the elements of these sets are arranged is somewhat arbitrary, 
and will be considered later. At present it suffices to assume that an ordering 
has been assigned to the elements of each set. We shall signify this ordering by 
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means of scalar indices i = 1, 2, 3, ... o r j  = 1, 2, 3, .... However, to avoid cum- 
bersome double subscripts an abbreviated notation will be used henceforth, 
exemplified by the following: 

pi E psi, pi = pa;, aii = a,.,?. 

On this understanding it is evident that the spectral equations (8.7) can be 
written (making use of (8.8)) in the following matrix form: 

$ 3  

I 
i 

dp/dt = (v)r + f (Ap’ + Bq’) 

dqldt = fCP‘, 
dr/dt = - (v) p; 

dp’ldt = (Y‘) r’-f(ATp + CTq), 

dr’/dt = - (v’) p’. 
dq’jdt = -fBTP, 

(8.9a) 

(8.9b) 

Here we have introduced vector and matrix notation, exemplified by 

p = colp, 

() = diagonal matrix 

A = (IaijII. 
In  (8.9b), the superscipt T means a matrix transpose. 

of (8.9) have the form 
Since we seek the normal modes, we assume that the time-dependent vectors 

(8.10) I (P, q, r’) = (P, Q, R’) sinat, 
(p‘, q’, r) = (P’, Q‘, R) cos at, 

where a is the normal-mode frequency, and the vectors denoted by capital 
letters on the right are constants to be determined. Substitute this in (8.9) 
and eliminate Q, Q’, R, R’. The result is: 

(8.11) 1 (a21 - (v’) - f2BBT) P - a-fAP‘ = 0, 

- afATP + ( a 2 1  - ( ~ ’ 2 )  -f2CTC)P’ = 0. 

Here I is the identity matrix. If a solution of (8.11) is found, the corresponding 
normal-mode configuration can be obtained from insertion of (8.10) into (7.8) and 
(7.11). 

If we take cos a t  in place of sin at in (8.10) and sin at in place of cos at, then the 
result is (8.11) with a replaced by - a. The equations thus modified evidently 
have the solution 

and it can be verified that the corresponding normal-mode configuration would 
be identical with the one obtained from (8.10) except for a quarter-period phase 
shift of t .  A linear combination of the two configurations would again give the 
configuration corresponding to (8.10) but with an arbitrary phase angle for t. 
There is no loss of generality in taking this phase angle to be zero: that is, in 
restricting attention to the phase imposed by (8.10). In  other words, although the 
admissible values of a occur in pairs & 1 a[, there is no loss of generality in restrict- 
ing attention to + la1 because - la1 corresponds to a normal mode with the same 
configuration as + la1 but with a phase shift of a quarter period. 

- a, - P, - Q, R; P’, Q’, - R‘, 
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In  (8.11) one more elimination (of P or P’) is possible, but it has been found 
more convenient to solve (8.11) jointly for P and P’, so the admissible values of 
a evidently are the roots of 

det L(a) = 0, (S.12) 

&I -(v2)-f2BBT i -afA 
L(g) j ............................................ ( - afAT j (r21 - (v’2) -f2CTC 

It is evident that the coefficient matrix L is symmetric. 

9. Numerical computation of frequencies and modal configurations 
In  order to proceed with the determination of the admissible values of (T 

according to (8.12), i t  is necessary at this stage to decide upon a specific ordering 
of the wave-number pairs (k, I) and (k’, Z’). This we have done in such a manner 
that the zero-rotation frequencies vi and vi form a sequence of ascending values; 
that is, v1 < v2 < v3 . . . and v; < v; < u; . . . . Even though this ordering is arbitrary 
to some extent, it  is plausible because we are mainly interested in determining 
the effect of rotation on the first few slowest modes. Since L(a) must be truncated 
a t  some point for computational purposes, this particular ordering takes into 
account the slowest modes contained in the zero-rotation spectrum. 

The truncation of L(cr) means a truncation of the vectors P, P’ and hence of 
Q, Q’, R, R’ also. Although the truncated P, P’, Q, Q’ need not have the same 
number of elements, we have in fact given P and P’ the same number of elements 
in all numerical computations. (If P and P‘ are truncated a t  the first element, 
(8.12) gives the result (1.1) of Lamb.) The roots (r of (8.12) were calculated by 
an application of the rule of false position. Once a root r~ is found, the associated 
vector (P, P’) is obtained, and then the vectors Q, Q’, R, R’ by means of (8.9). 

The modal configuration is represented in terms of the phase and amplitude 
of the height field. The solution for [ obtained from (7.11) and (8.10) may be 
written 

!%,Y,t) = - 4 x , y )  cos[ot-WGy)l, 

A(x,  Y) ([c Ri C$(x, y)12 + [C R: G(x ,  y)12)’, 
i i 

O(X, Y) f arc tan [C Rl G(x,  Y)/C Ri y)I* 
i i 

A is the amplitude and 8 is the phase of high water at  any point in the rectangle. 
These quantities are calculated at intervals of Ax = 0.025a = Ay. 

The frequencies were computed by truncating L(a) at 20 x 20 size for 

f/Vl = 0.25 (0.25) 1.00, 

at 24 x 24 for f / v l  = 1.25 (0-25) 1.50, at 28 x 28 for f/vl = 1.75 (0.25) 2.25. Table 6 
shows the convergence of a / v l  for the slowest positive and negative antisymmetric 
modes (which, in general, are the most affected by rotation) as a function of the 
size of L(a). From this table it is clear that the maximum change in a is about 
0.1 % for flyl  = 1 and 0.3 % for f/vl = 2. Moreover, from an examination of the 
components of P and P’ it can be inferred that inclusion of more terms in L(a) 
is not likely to produce any significant change in c. Similar results for the higher 
modes are not presented here but a test of the convergence property at  f/vl = 1 
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showed even better convergence for these modes. In  the case of a 2 x 1 rectangle 
with f /v l  = 2, it was found that cr/vl = 0.8567 from a 24 x 24 determinant and 
0.8572 from a 28 x 28. Taylor's (1922) result for this case is 0.859. 

It is clear from this brief summary that the frequency results obtained by 
truncating L(cr) a t  the sizes indicated in the earlier part of the preceding para- 
graph represent values that have converged well, a t  least up to three significant 
digits. 

Determinant size 
r > 

Mode f i I V l  1 6 x  16 20 x 20 24 x 24 

( 1 9  0) 1 0.7225 0.7234 0.7231 
(0, 1) 1 1.5089 1.5088 1.5088 

Determinant size 

Mode f I V l  24 x 24 28 x 28 30 x 30 

(1, 0) 2 0.6163 0.6166 0.6181 
(0, 1) 2 1.7337 1.7386 1.7368 

TABLE 6. Values of a/v,  from convergence test for a square basin 

10. The zero-rotation limit of the normal-mode solutions 
By means of the numerical procedure described in the preceding section, it 

is possible to obtain the frequencies for any rotation speed f. However, in the 
limit f + 0 it  is possible to obtain analytic results. We shall briefly state the 
results for 

Such results are useful and, moreover, have played an important role in the 
historical development of the subject. 

Starting from the infinite set of homogeneous equations (8.11) for P, and Pi 
we can obtain three set of equations-namely (8.11) evaluated at f = 0, and the 
equations once and twice differentiated with respect to f and evaluated at  f = 0. 

The inferences from these derived sets of equations depend upon whether 
the zero-rotation limit of cr coincides with a singlet (non-repeated) zero-rotation 
frequency and, if not, upon the nature of the multiplicity. In  the case of a 
mode whose zero-rotation frequency is a singlet v,, equations (8.11) evaluated 
at  f = 0 show that except for the element P, all the elements of P are zero and all 
the elements of P' are zero. Since we consider only free modes, we can assign 
P, = 1 for all f ,  arbitrarily. The once-differentiated equations of (8.11) (again 
evaluated at f = 0 )  then show that acr/af = 0 a t  f = 0. Proceeding to the twice- 
differentiated equations of (8.11), one can obtain a2u/af2 a t  f = 0. The results 
obtained thus are 

B = v,; agpf = 0 ,  (10. I.)  
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a t  f = 0. (It is also possible to obtain results for aP/af, a2P/2f2, aP’/af, a2P’/af2 
from the equations derived from (8.11); see Rao 1965.) 

Thus, in the case of a singlet the effect of rotation is O ( f 2 )  on the frequency u, 
since in the limit f = 0 we find acr/af = 0 and a2u/af2 $. 0. In  figure 2, this is ex- 
emplified by modes (1, l), (2, 2) in a square and all the modes with the exception 
of (0 ,2)  and (4, 0) in a 2 x 1 rectangle, all of which have zero slope a t  f = 0. 

The result (10.1) corresponds to the corrected form of the classical result of 
Rayleigh (1909) (this correction was made by Proudman (1933); see also Velt- 
kamp (1960)). The result (10.1) specialized to the ( 1 , O )  mode in a 2 x 1 rectangle 
also corresponds to the explicit result given by Van Dantzig & Lauwerier 
(1960); their formula is given by equation (1.4) in this paper. 

Now consider a mode whose zero-rotation frequency coincides with a multiplet 
of the non-rotating spectrum. In this case the inferences from the derived equa- 
tions from (8.11) depend upon whether the elements of the multiplet belong to 
the same modal species; that is, upon whether or not all elements have the same 
symmetry in x. If they do, we shall refer to the multiplet as ‘homogeneous’; 
if not, ‘heterogeneous’. Suppose fist that we have a homogeneous multiplet of 
arbitrary order, and let subscripts r,  s, t ,  ... identify the elements in question, 
so that 0- = v, = v, = v t  = .... Then a straightforward analysis of the derived 
equations yields : 

(10.2) 

u = vr = v, = vi = . . . ; ag/af = 0, 

a2@f = eigenvalues of Ij gmn. I/ , 
(e, P,, Pi, . . .) = eigenvectors of llglnnll , 

where gm, are the symmetric matrix elements 

The indices m, n range over all elements r ,  s, t ,  . . . of the multiplet. Hence in the 
zero-rotation limit P has a finite number of non-zero components, one for each 
element of the multiplet. A comparison of (10.1) with (10.2) shows that in both 
cases 0- is O(f2). I n  figure 2, the case of a homogeneous doublet is exemplified by 
modes (2,0),  (0, 2); (1,  3), (3, 1)  in a square and (0, a),  (4, 0) in a 2 x 1 rectangle. 

Consider the case of heterogeneous multiplicities. In  the simple case of a 
doublet (0- = v, = vi) we obtain a t  f = 0: 

(10.3a) 

(10.3 6) i + r1(&a& + 6& + G,), 
(e, Pi) = (1 ,1)  for i k j a f  = + &a,,, 

(&Pi) = ( -  1 , i )  for a0-/af = - 4a,,. 

Hence when f = 0, P and P‘ have one non-zero component. A comparison of 
(10.3) for the heterogeneous doublet with (10.1) for a singlet (or (10.2) for homo- 
geneous multiplet) shows an important difference between the two cases. For the 
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case of heterogeneous multiplicities in the zero-rotation frequency spectrum, 
the effect of rotation on the frequency g is of O( f )  since &/af + 0 a t  f = 0, whereas 
for the homogeneous case, the effect is of O(f2). The case of a heterogeneous 
doublet is exemplified by modes (1,0),  ( 0 , l ) ;  (1 ,2) ,  (2 , l ) ;  (3,0), (0,3) in a square 
basin in figure 2 .  

The result (10.34 corresponds to the corrected result of Rayleigh (1903). 
The results ( 1 0 . 3 ~ ~  b )  were given by Van Dantzig & Lauwerier (1960) in the 
special case of the (1 ,  0 )  and (0, 1 )  modes in a square; their formula is given by 
equation (1.3) in this paper. 

The case of a heterogeneous multiplet of aribtrary order N + N’ can be worked 
out with little difficulty. In  particular, let 

= v, = vs = v1 = ... 1 ( N  values), 

g{ = v;, = v;, = v;, = . . . (N’ values), 

at the zero-rotation limit. Then it can be shown that the N + N ‘  admissible 
values of ag/af  at f = 0 are the eigenvalues of the matrix 

;(a: :) 
where a = \\unrL,l\. The index n ranges over r ,  s, t ,  ... and n‘ over r’, s‘, t’, .... 
Moreover, IN - N’I of these eigenvalues are zero, and the remainder occur in 
pairs with opposite sign and equal magnitude. 

PART 3. CONCLUSION 

1 1. Summary and conclusions 
Detailed numerical calculations were made for the frequencies and modal 

structures of the free gravitational oscillations in rotating rectangular basins 
of uniform depth, under the quasistatic and planar approximations. The free 
oscillations consist of antisymmetric and symmetric modes as noted by Taylor 
(1922). In  each family, there are modes propagating in the positive and negative 
directions of the basin. In  general, the antisymmetric modes consist of an odd 
number of wave systems and the symmetric modes an even number. 

The classical result of Taylor (1922) for the slowest positive antisymmetric 
mode in a 2 x 1 rectangle rotating with an angular speed equal to the slowest 
zero-rotation oscillation was verified. Good agreement was also obtained with the 
frequency values given by Corkan & Doodson (1952) for the slowest positive and 
negative antisymmetric modes in a square basin. The analytic result of Van 
Dantzig & Lauwerier (1960) for the frequency of the slowest positive and 
negative antisymmetric modes in a square basin was found to give good results 
up to rotation values of 2w/v1 x 0.75 for the positive mode and 2w/v,  M 0.6 for 
the negative. 

The calculations show the frequency-splitting of certain multiplets in the zero- 
rotation spectrum. Also the curves of modal frequency as a function of rotation 
for some of the modes exhibit a surprising reversal in the sign of the slope; a 
property that is not exhibited, for example, in the case of a circular cylinder. 
Further, in the square or rectangular geometry, in the spectrum of modes 
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associated with a fixed longitudinal or transverse wave-number there can be more 
than one gravitational mode for which CT < f .  

As far as the structural characteristics of the modes are concerned, it is possible 
to say the following: rotation of any given rectangle transforms the slowest 
zero-rotation antisymmetric mode into a positive wave. The corresponding trans- 
verse mode is transformed into a negative wave for slow rotations, but continu- 
ously changes its structure into a set of positive waves as rotation increases, as 
was originally found by Corkan & Doodson (1 952) in a square basin. The slowest 
zero-rotation symmetric mode is transformed, on introduction of rotation, into 
two positive waves. The slowest negative symmetric mode consists of two nega- 
tive waves at small values of rotation. This mode also changes its structure with 
increasing rotation. The structures of the higher modes are very complicated 
even at  small rotations and do not permit generalization in any obvious manner, 
except that all negative waves are ‘unstable’ in the sense noted above. 

An analysis of the spectral dynamic equations in the limit off --f 0 showed 
that there is a class of modes for which the planar approximation is not valid. 
These are the modes for which the rotation-induced frequency shift from the 
zero-rotation value is of O(fz). The classical frequency results for the case of no 
redundancy or one redundancy in the zero-rotation frequency spectrum are 
extended to include an arbitrary number of redundancies. 

It was demonstrated that for highly elongated basins one can ignore the effect 
of the earth’s rotation on the period of the lowest longitudinal oscillation and 
adequately take these effects into account through a Kelvin-wave approximation. 

Experimental work was carried out to determine the frequencies of the 
slowest positive and negative antisymmetric modes and the slowest positive 
symmetric mode, for various rotation speeds. Quantitative agreement of the 
experimental and theoretical values of the ratio of frequency to the zero-rotation 
value was found to be good. The importance of the effects due to free-surface 
curvature for some of the modes is brought out through a suitable use of the 
experimental results and theoretical results under the planar approximation. 
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